Keeping returns optimal: gain control exerted through sensitivity adjustments in the harbour porpoise auditory system.

نویسندگان

  • Meike Linnenschmidt
  • Kristian Beedholm
  • Magnus Wahlberg
  • Jakob Højer-Kristensen
  • Paul E Nachtigall
چکیده

Animals that use echolocation (biosonar) listen to acoustic signals with a large range of intensities, because echo levels vary with the fourth power of the animal's distance to the target. In man-made sonar, engineers apply automatic gain control to stabilize the echo energy levels, thereby rendering them independent of distance to the target. Both toothed whales and bats vary the level of their echolocation clicks to compensate for the distance-related energy loss. By monitoring the auditory brainstem response (ABR) during a psychophysical task, we found that a harbour porpoise (Phocoena phocoena), in addition to adjusting the sound level of the outgoing signals up to 5.4 dB, also reduces its ABR threshold by 6 dB when the target distance doubles. This self-induced threshold shift increases the dynamic range of the biosonar system and compensates for half of the variation of energy that is caused by changes in the distance to the target. In combination with an increased source level as a function of target range, this helps the porpoise to maintain a stable echo-evoked ABR amplitude irrespective of target range, and is therefore probably an important tool enabling porpoises to efficiently analyse and classify received echoes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-varying auditory gain control in response to double-pulse stimuli in harbour porpoises is not mediated by a stapedial reflex

Echolocating animals reduce their output level and hearing sensitivity with decreasing echo delays, presumably to stabilize the perceived echo intensity during target approaches. In bats, this variation in hearing sensitivity is formed by a call-induced stapedial reflex that tapers off over time after the call. Here, we test the hypothesis that a similar mechanism exists in toothed whales by su...

متن کامل

Equal latency contours and auditory weighting functions for the harbour porpoise (Phocoena phocoena).

Loudness perception by human infants and animals can be studied under the assumption that sounds of equal loudness elicit equal reaction times (RTs). Simple RTs of a harbour porpoise to narrowband frequency-modulated signals were measured using a behavioural method and an RT sensor based on infrared light. Equal latency contours, which connect equal RTs across frequencies, for reference values ...

متن کامل

POD provides additional information to validate porpoise registrations. A09 A SECOND GENERATION OF AN AUTONOMOUS AND PORTABLE AUDITORY SCREENING SYSTEM FOR CETACEAN CLINICAL AND RESEARCH PURPOSES

46 visually observing the study area. The received data of both PODs were analyzed and compared to each other as well as to the broad-band recording analyzed in AVISOFT (Saslab). This poster shows the results of the recordings from a visually confirmed harbour porpoise encounter. The porpoise’s echolocation sequences were recorded successfully on all three systems and could be assigned to each ...

متن کامل

Don’t forget the porpoise: acoustic monitoring reveals fine scale temporal variation between bottlenose dolphin and harbour porpoise in Cardigan Bay SAC

Populations of bottlenose dolphin and harbour porpoise inhabit Cardigan Bay, which was designated a Special Area of Conservation (SAC), with bottlenose dolphin listed as a primary feature for its conservation status. Understanding the abundance, distribution and habitat use of species is fundamental for conservation and the implementation of management. Bottlenose dolphin and harbour porpoise u...

متن کامل

Robust Fuzzy Gain-Scheduled Control of the 3-Phase IPMSM

This article presents a fuzzy robust Mixed - Sensitivity Gain - Scheduled H controller based on the Loop -Shaping methodology for a class of MIMO uncertain nonlinear Time - Varying systems. In order to design this controller, the nonlinear parameter - dependent plant is first modeled as a set of linear subsystems by Takagi and Sugeno’s (T - S) fuzzy approach. Both Loop - Shaping methodology and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 279 1736  شماره 

صفحات  -

تاریخ انتشار 2012